
1(No part of the Extension may be reproduced without the written consent of Contemporary Controls.)

This is the first of a two-part series on Modbus. The
first issue addresses the protocol itself. The second
discusses the Modbus Serial and Modbus TCP
implementations allowing Modbus to remain a very
popular protocol.
What do ARCNET®, Ethernet and Modbus have in
common? They were all developed in the 1970s and are
still widely used today. Of course they have evolved
over time, but their basic operation remains intact. Why
change a good thing?
There is one basic difference in the three technologies.
Both ARCNET and Ethernet are data link and physical
layer standards without a protocol while Modbus is a
protocol that can operate over several data links and
physical layers. Originally intended as a point-to-to
interface between proprietary Modicon products, the
protocol has found use in multi-drop and peer-to-peer
networks like TCP/IP. It is no longer restricted to just
Modicon equipment.

Modicon Communications Protocol

Modbus was introduced in 1979 by the company
“Modicon,” a leader in the infant programmable logic
controller (PLC) market. It was intended as the internal
point-to-point communications protocol between
Modicon PLCs and programming panels used to
program the controllers. After some acquisitions,
Modicon is now part of AEG Schneider Automation
with the brand names “Modicon,” “Square D,” and
“Telemecanique.” You would think the protocol would
have long been forgotten but the group Modbus-IDA
now carries the banner at its http://www.modbus.org
web site. The protocol continues to thrive since it is
easy to understand, and many engineers have “cut their
protocol teeth” on Modbus. Besides, it is an open sys-
tem and can be used royalty-free. It is not restricted to
just industrial automation. Modbus can be found in
numerous diverse automation industries including
building automation.
The Modicon Modbus Protocol Reference Guide dated June
1996 can be found at the Modbus-IDA site along with
other Modbus references.

When you read the original Modbus documentation you
will notice many mentions of specific Modicon
equipment. Only later, did the Modbus-IDA group
develop generic standards to assist implementation. The
three other references are called the Modbus Application
Protocol Specification, Modbus over Serial Line Specification and
Implementation Guide, and the Modbus Messaging on TCP/IP
Implementation Guide. All are available for free. The
Modbus protocol would operate over several network
implementations including Modicon’s proprietary
peer-to-peer network Modbus Plus. Before we examine
the more modern implementations in Part 2, we will
concentrate on the protocol itself.

Original Modicon Implementation

It is interesting to note that Modicon did not use
Modbus in a multi-drop network but instead used
point-to-point connections with EIA-232C interfaces
installed on their PLCs. The Modbus protocol is a
master-slave protocol and the terms “master” and
“slave” continue to be used today. Modbus allows only
one master and up to 247 slaves. A slave is typically a
Modicon PLC with an EIA-232C interface. Masters are
typically programming panels or host computers.
Therefore, if one host computer needed to
communicate to four PLCs, four serial ports would be
required on the host computer. This results in a star
topology. EIA-232C cable lengths are short, so if longer
distances are required modems can be used. It was not
until later that 2-wire and 4-wire EIA-485 multi-drop
networks appeared.
With the Modbus protocol, only the master can initiate
a message. Slaves cannot. So if a slave notices “that the
cooling water pumps to the nuclear reactor have
stopped,” the slave cannot inform the master until the
master happens to send a query to the slave with the
effective message “how are things going?” The master
has no address, but the slaves are numbered from
1 to 247.
Address “0” is reserved as a broadcast address to all
slaves. All slaves will receive the broadcast message but
will not respond.

Introduction to the Modbus Protocol

Volume 9 • Issue 4
JULY-AUGUST 2008

© 2008 Contemporary Control Systems, Inc.

By George Thomas, Contemporary Controls

http://www.modbus.org

2

Query—Response Messaging

The command issued by the
master is called a Query and the
response from the slave is simply
called the Response. The format
in Figure 1 shows the simplified
structure of the messages that
can serve as either a query or
a response.
The master has no address so the

device address is always the intended slave. If it is a
query, the query is directed to the slave with the
assigned device address. If the message is a response,
the response came from the slave with the indicated
device address. Commands are issued by function codes
such as 03—Read Holding Registers. In this case the
master must indicate the range of registers to be
queried. The slave responds with the requested data
based upon the indicated range. The message format is
similar for all function codes, but of course the data
changes based upon the code itself. After each message
there is an error check appended by the originating
station so that the receiving station can check the
integrity of the received message.
The above scenario assumes a successful interchange of
a query and a response. If the slave wants to
communicate an error condition or an exception case,
the function code is modified by the slave by setting the
most-significant-bit (MSB) of the function code to a 1.
The data field will then contain information specific to
the exception. The master can still extract the original
function code that it sent.
It should be noted that the query-response cycle is
completed before the master sends out the next query
to either the same slave or another slave. This is unlike
protocols such as DeviceNet that can send out one
multicast command and then wait for several devices to
response in no particular order to this one command.
Modbus has no multicast capability so time is lost as
each master query requires the directed slave to not only
receive the message but act upon it and respond before
the master moves on to other communications activity.

ASCII and RTU Modes

The simple Modbus protocol becomes a bit more con-
fusing since there are two serial transmission modes.
One is called ASCII for American Standard Code for
Information Interchange and the other RTU for Remote
Terminal Unit. In this case RTU does not mean “roof-
top unit.” The RTU term comes from the Supervisor
Control and Data Acquisition (SCADA) industry where the
master, called a Central Terminal Unit (CTU),

communicates to several RTUs at distant locations. This
configuration is similar to that of the original Modicon
implementation with one CTU communicating to RTUs
using modems in a star topology. The use of either
ASCII or RTU modes has nothing to do with topology,
but it impacts the framing and timing of the messages.
When operating over serial communication links, both
modes utilize asynchronous communications with one
character sent at a time with defined framing.

Figure 2 shows how a character is sent using
asynchronous serial communications. Each character is
sent as a series of bits with a bit time equal to the
reciprocal of the baud rate. For example, at 9600 baud
the bit time is 104.1 µs. When no messages are being
sent, the line is said to be marking. The opposite of the
marking state is the spacing state. Each character begins
with a start bit, as the line drops to the spacing state for
one bit time, and ends with one or more stop bits as the
line returns to the marking state.
Either a 7-bit (ASCII mode) or 8-bit (RTU mode)
character is sent in between—with the least-significant-
bit (LSB) sent first. After the character comes either a
parity bit or another stop bit. Odd, even, or no parity
can be selected by the user. In ASCII mode it takes ten
bits to send one character while in RTU mode it takes
eleven. With asynchronous communications, characters
can be sent either back-to-back or with some delay
between characters. A series of characters form
messages having different structures depending whether
ASCII or RTU mode is intended.

ASCII Message Framing

The seven-bit ASCII code was developed in the early
1960s as a uniform code for displaying English
characters on teleprinters such as the Teletype Model
ASR-33. As CRT terminals (glass teletypes) began to
replace electromechanical teleprinters, the ASCII standard
was retained, making the migration easier. ASCII is a
U.S. standard for displaying English characters and for
sending control codes such as Carriage Return (CR) and
Line Feed (LF) which are carryovers from the teleprinter
days. The reason a CR precedes a LF was to give the
teleprinter more time to physically move the carriage
from the end of a line to the beginning of the line.

Figure 2. Character framing for 7-bit ASCII and 8-bit RTU with or without parity.

Figure 1. Simplified Modbus
message format.

3

The line feed would advance a line vertically, but that
activity was faster than moving the carriage so this
command was sent second in the sequence.
Electromechanical teleprinters had no buffering so if an
LFCR was executed instead of a CRLF you could have
printing in the middle of the page instead of at the
beginning because the carriage failed to return in time
before the next printable character was received. The
CRLF sequence was very important for 10 characters
per second teleprinters but not for CRT terminals. For
Modbus ASCII mode, the CRLF sequence simply indicates
the end of a frame. The advantage of ASCII mode is
that if you attached a CRT terminal in place of a slave
device, you can observe the nicely formatted human
readable code sent by the master on the CRT screen.

Figure 3 shows the ASCII framing for Modbus
messages. The start of frame is simply a colon (:) and
the end of frame is the CRLF sequence requiring two
ASCII characters. ASCII characters are each 7-bits. All
other characters in the other fields must be either the
numbers 0–9 or the letters A–F since the data is going
to be represented in hexadecimal format but displayed
as ASCII characters. For example, function code 03
would be displayed as two ASCII characters “0” and
“3.” The same applies to the data. One advantage of
ASCII mode is timing. As much as one second can elapse
between characters without a timeout error. Therefore, a
good typist could simulate a master by typing out a
character string on a CRT terminal to a slave and
observing the slave’s response.

RTU Message Framing

When operating in RTU mode the timing is much more
critical. There is no specific Start of Frame character.
Instead, the message frame begins with four character
times of marking. After this interval, the device address
is sent followed by the function code and data. There
are other differences from that of the ASCII message
frame as noted in Figure 4. Instead of a Longitudinal
Redundancy Check (LRC) check in the ASCII frame, a
more robust Cyclic Redundancy Check (CRC) check of the
data is applied in the RTU frame. The End of Frame
indication is strictly based upon four character times of
marking.
RTU messages must be sent as a continuous stream and
any significant gaps between characters could result in a
dropped message. Unlike ASCII, the RTU messages are
not human readable.

However, the messages are quite compact and more
efficient to send. The RTU mode remains the more
popular format.

Modbus Register Map

Before we discuss function codes, we should study the
Modbus register map in Figure 5 since certain function
codes imply specific register ranges. Early PLCs were
mostly concerned with discrete inputs and discrete
outputs each represented by one-bit in a register map.
For Modicon PLCs, discrete outputs begin at location
00001 and discrete inputs begin at location 10001. Each
requires one-bit of storage. Inputs, called contacts, can
only be read and outputs, called coils, can be read or
written. Since early PLCs were considered relay panel
replacements, the terms coils and contacts were retained
to assist electricians trying to understand these new
electronic controllers.
As the complexity of PLCs increased, the ability to
handle analog input/output (I/O), and to execute math
calculations was added. The I/O range of 16-bit register
references begins at 30001 for read-only analog inputs or
thumbwheel switches, and 40001 for general purpose
read/write registers that can also serve as analog out-
puts. There are really no restrictions above 40001.
Depending upon the vendor of the equipment, they can
be internal registers, analog inputs, analog outputs, and
even discrete inputs and outputs. However, not all
function codes reference this range—but enough do.

Function Codes

The Modbus function codes are defined in both the
Modicon Modbus Protocol Reference Guide and the Modbus
Application Protocol Specification. Because there are
differences in the function names and the number of
function codes the latter document is recommended.
Although the function code range spans from 1 to 127,
only about 20 are defined public function codes. User-
defined function codes are allowed in specific locations
within this range. However, many Modbus devices only
support a small subset of the available codes. We will
only examine those function codes that involve single-bit
and 16-bit data access to get a flavor of how I/O is
handled. A list is provided in Figure 6.

Figure 3. ASCII framing of a Modbus message.

Figure 5. Typical Modbus Register Map.

Figure 4. RTU framing of a Modbus message.

4

Past issues of the copyrighted Extension are available. Please
visit our web site www.ccontrols.com. Select Support and click
on Extension Archive.

www.ccontrols.com

You will notice from Figure 6 that 1-bit function codes
relate to discrete devices such as contacts and coils. The
16-bit function codes relate to input registers and
holding registers. Input registers can only be read while
holding registers can be either read or written. Also
notice there is an implied I/O range depending upon
the function code. For example, function code
06—Write single register, only addresses the
relevant range of 40001–50000 and no other range.
Therefore it is only necessary to reference the offset
from the base range when structuring the message.
Instead of indicating register location 40001 we simply
say 0000.
This is a good time to explain one of the more
confusing aspects of Modbus and that is referencing
I/O points in Modbus messages. Modicon elected to
number physical points within a range beginning with
the number 1 instead of 0. Coil 1 is referenced in a
message as location 0000 and not 00001. Likewise,
Contact 1 is referenced as 0000 instead of 10001. The
same applies to holding register 40001. It is also
referenced as 0000. The function code always points to
the proper I/O range and only the offset from base
address of that range is needed to uniquely identify
the point.

The offset is a 16-bit word and is displayed
in hexadecimal when examining the actual
Modbus message. All references in the
Modbus Register Map are decimal references.
Register 40016 is referenced as 0x000F which
is hexadecimal for 40016–40001. Although
this is confusing at first, it is only an issue for
those writing Modbus drivers.

Summary

Modbus is popular for its simplicity. With so many users
in the field with Modbus knowledge and a Modbus-IDA
association backing this open standard, it will continue
to remain popular.

References

Modbus Application Protocol Specification V1.1b,
http://www.Modbus-IDA.org, December 28, 2006

Modbus over Serial Line Specification and Implementation
Guide, V1.02,
http://www.Modbus-IDA.org, December 20, 2006

Modbus Messaging on TCP/IP Implementation Guide
V1.0b,
http://www.Modbus-IDA.org, October 24, 2006

Modbus Protocol Reference Guide Rev J,
http://www.Modbus-IDA.org, June 1996

Figure 6. Data access function codes.

http://www.Modbus-IDA.org
http://www.Modbus-IDA.org
http://www.Modbus-IDA.org
http://www.Modbus-IDA.org
http://www.ccontrols.com

	Front page
	Introduction
	Modicon Communications Protocol
	Original Modicon Implementation
	Query--Response Messaging
	ASCII and RTU Modes
	ASCII Message Framing
	RTU Message Framing
	Modbus Register Map
	Function Codes
	Summary
	References

