
CONTEMP

CANISA/CAN104 DriverCANISA/CAN104 DriverCANISA/CAN104 DriverCANISA/CAN104 Driver

Contemporary Control
Systems, Inc.
Driver for DOS version 1.1
ORARY CONTROL SYSTEMS, INC !!!! CANISA/CAN104 DRIVER !!!! VERSION 1.1 !!!! 5.23.00

CONTEMPORARY CONTROL SYSTEMS, INC !!!! CANISA/CAN104 DRIVER !!!! VERSION 1.1 !!!! 5.23.00

Table of Contents

CAN Driver Overview... 1

Provided Files ... 2

Installation ... 2

History ... 3

References.. 3

Driver Operation ... 3

CAN Bus Considerations ... 4

Driver Data Structures.. 5

canObject ... 5

canFilter.. 6

canBuffer.. 7

Driver Functions.. 8

canInit()... 8

canSend()... 9

canRecv()... 9

canDestroy()... 9

canReset().. 10

canEnable().. 10

canSetBaud() ... 10

canSetFilter().. 11

canStatus()... 11

canError() ... 11

canTxPurge() ... 12

canRxPurge()... 12

canRecover() ... 12

CONTEMPORARY CONTROL SYSTEMS, INC !!!! CANISA/CAN104 DRIVER !!!! VERSION 1.1 !!!! 5.23.00

canTime() ... 13

Timer Module.. 14

tmrHook() ... 14

tmrUnhook() ... 14

CONTEMPORARY CONTROL SYSTEMS, INC !!!! CANISA/CAN104 DRIVER !!!! VERSION 1.1 !!!! 5.23.00

This page intentionally left blank

CONTEMPORARY CONTROL SYSTEMS, INC !!!! CANISA/CAN104 DRIVER !!!! VERSION 1.1 !!!! 5.23.00
PAGE 1

Overview
Contemporary Controls CAN Driver

CAN Driver Overview

The Contemporary Controls CAN Driver (CCCD) provides a software interface for sending
and receiving messages over the Controller Area Network (CAN). It includes functions for
device initialization, sending and receiving CAN packets, and for reporting device status. It
operates in either interrupt or polled mode.

The driver supports the Contemporary Controls PC104XX (for the PC104 Bus), and
PCXXX (for the PC ISA bus). Multiple boards may be used simultaneously by a single
application. These boards use the Phillips SJA1000 CAN controller chip which is initialized
to operate in PeliCAN ™ mode. PeliCAN mode is compatible with the CAN 2.0B
specification and includes provisions for extended frames, long identifiers, and improved
status reporting.

A single function call is used to initialize a board. This function is accepts the interrupt
number, I/O address, baudrate, the received message filter, and the size of the send and
receive buffers. Once initialized the application can send messages at will. Incoming
messages that pass the receive message filter are stored in a buffer for retrieval by the
application.

The driver does not implement any specific protocol. It can be used, however, to send
packets over any of the popular CAN networks (DeviceNet, etc.). The included CANTALK
application, for instance, uses DeviceNet Group 3 messages to communicate between
nodes on a DeviceNet network.

CONTEMPORARY CONTROL SYSTEMS, INC !!!! CANISA/CAN104 DRIVER !!!! VERSION 1.1 !!!! 5.23.00
PAGE 2

Provided Files

Along with the driver, a sample application is also provided in both source code and compiled
forms. The table below lists the provided files.

File Description

CANTALK.EXE DOS sample driver application that allows ASCII messages to be
sent/received between two or more computers.

CAN_DRIV.H Include file that defines how to interface to the driver.

CAN_DRIV.C Driver source code.

PCTIMER.H,C Timer support function for CAN_DRIV.C.

CANTALK.CPP C++ source code file for CANTALK.EXE sample application.

COMPORT.H,C
SCRN_FCN.H,C
SCREEN.HPP,CPP

Screen display and support functions for CANTALK.CPP.

Installation

The only installation required is to copy CAN_DRIV.C, CAN_DRIV.H, PCTIMER.C, and
PCTIMER.H to the directory in which they will be used. You will include these files into
your C or C++ project.

CONTEMPORARY CONTROL SYSTEMS, INC !!!! CANISA/CAN104 DRIVER !!!! VERSION 1.1 !!!! 5.23.00
PAGE 3

History

The driver history is listed in the table below:

Item Version Date Comments

CAN_DRIV.H,C 1.0 5.23.00 Initial Release.

Manual 1.0 5.23.00 Initial Release

References

[1] SJA1000 Data Sheet, Phillips Corporation 1997

[2] AN97076 Application Note: SJA1000 Stand-alone CAN controller; Phillips Corporation.

[3] CAN Bus Specification; Robert BOSCH GmbH.

Driver Operation

The purpose of the driver is to provide a means to allow DOS applications to send and
receive CAN packets. Best performance is achieved when the driver is operated in
interrupt mode; both incoming and outgoing packets are automatically buffered.

There are only three functions necessary to send and receive packets; ’canInit()’,
‘canSend()’, and ‘canRecv()’. The ‘canInit()’ function takes care of initializing the SJA100. It
returns a pointer to an initialized ‘canObject’ structure that is passed to all other functions.

Both ‘canSend()’ and ‘canRecv()’ operate on ‘canBuffer’ structures. These structures are
used to store header and packet data.

The ‘canSend()’ function is used to send packets out on the CAN network. This function
buffers packets automatically, so you can send a series of packets without waiting for
each one to be sent.

The ‘canRecv()’ function returns TRUE if a message has been received and data has
been transferred to the ‘canBuffer’ structure.

CONTEMPORARY CONTROL SYSTEMS, INC !!!! CANISA/CAN104 DRIVER !!!! VERSION 1.1 !!!! 5.23.00
PAGE 4

CAN Bus Considerations

Although the driver tries to abstract the network as much as possible, some understanding
of CAN must be attained in order to effectively utilize the driver.

Packets sent over a CAN network have an ‘identifier’ field. Each node examines the
identifier field of each packet that is sent on the network. A node will only accept a packet if
the identifier field matches the criteria programmed into registers within the CAN chip. The
‘acceptance mask’ register contains a value which identifies which bits of the identifier field
are relevant. The ‘acceptance code’ register contains a value which identifies whether the
relevant bits should be ‘1’ or ‘0’. Only those packets whose identifier field, after masking
and ANDing, matches the acceptance code will be accepted and stored within the CAN
chip.

The original CAN specification (Part A) had an 11 bit identifier field and 8 bit acceptance
mask and code registers. The acceptance mask and code applied to the top 8 bits of the
identifier which meant that of the 2048 possible identifier values, you could only mask for
256 of them; the bottom 3 bits didn’t matter.

The SJA1000 CAN chip from Phillips implements the Part B CAN specification which
allows extended frames with 29 bit identifiers. When sending standard frames, the
SJA1000 allows you to have dual identifier masks and codes, you can discriminate among
all 11 bits of the standard identifier, and you can even extend the identifier process into the
first two data bytes within a packet.

DeviceNet, for instance, uses only standard frames. The included ‘cantalk.exe’ program
uses standard frames designed to look like ‘Group 3’ DeviceNet packets, so that it can
peacefully co-exist on a DeviceNet network. The boards are set up, however, to use an
identifier which includes the first data byte in the identifier process. The first data byte in a
cantalk packet is used to specify the destination node. Since this data byte is programmed
to become part of the identifier field, only those Group 3 packets with matching MAC ID’s
are accepted by a node. This means that there can be a maximum of 7 data bytes
transferred in one packet (because the first data byte has become part of the identifier).

Programming the identifier masks and codes is probably the hardest part of using the
SJA100 in PeliCan ™ mode. This CAN driver is capable of handling standard and
extended frames with single and dual identifiers. Refer to the CANTALK source code for
an example on how to set up the identifier masks and codes.

CONTEMPORARY CONTROL SYSTEMS, INC !!!! CANISA/CAN104 DRIVER !!!! VERSION 1.1 !!!! 5.23.00
PAGE 5

Driver Data Structures

canObject

//
// CAN object structure.
//
typedef struct canObject
{

char inService; // Set when initialized.
char irqUsed; // Set when using interrupts.
char irq; // IRQ number (0-15).
short port; // Base address of SJA1000.
short oldImrMask; // Original PIC IMR mask.
#ifdef __cplusplus // Original interrupt handler.
void (interrupt far *oldHandler)(...);
#else
void (interrupt far *oldHandler)();
#endif
uchar modeReg; // Mode control bits.

//
char txRunning; // Transmit operation in process.
uchar errorFlags; // Accumulated error bits.
ushort errorCnt; // Number of error ints.
ushort errorIdx; // Error log index.
uchar errorLog[MAX_ERROR]; // Error log.
char rxOverrun; // Set if overrun.
char timeTrig; // Set if next receive int to be 'zero' time.
long timeZero; // 'Zero point' for time stamps.
//
ushort rxBufSize; // Max number of receive 'canBuffer'.
ushort rxCount; // Number of 'canBuffer' in rx buffer.
ushort rxIn; // Index for putting messages in rx buffer.
ushort rxOut; // Index for taking messages out of rx buffer.
struct rawCanBuffer huge *rxBuf;// Pointer to receive buffer.
//
ushort txBufSize; // Max number of transmit 'canBuffer'.
ushort txCount; // Number of 'canBuffer' in tx buffer.
ushort txIn; // Index for putting messages in tx buffer.
ushort txOut; // Index for taking messages out of tx buffer.
struct rawCanBuffer huge *txBuf; // Pointer to transmit buffer.

};

A ‘canObject’ structure is used for each CAN board in a system. Each board is identified
by a pointer it’s ‘canObject’ structure, and this pointer is passed as the first parameter to all
CAN board functions. This structure is created and initialized by the ‘canInit()’ function.

This structure stores information used by the other CAN board functions.

CONTEMPORARY CONTROL SYSTEMS, INC !!!! CANISA/CAN104 DRIVER !!!! VERSION 1.1 !!!! 5.23.00
PAGE 6

canFilter

//
// Structure used to set acceptance filters.
//
typedef struct canFilter
{

char type; // Type of filter; STD_SNGL, etc.
 //

// Filter 1.
 //

long idMask1; // Identifier mask.
 long idCode1; // Identifier matching value.

char rtrMask1; // RTR bit mask(s).
 char rtrCode1; // RTR bit value(s).
 //
 // Filter 2.

//
long idMask2; // Identifier mask.

 long idCode2; // Identifier matching value.
 char rtrMask2; // RTR bit mask(s).
 char rtrCode2; // RTR bit value(s).

//
 // Data Filter.
 //
 uchar dataMask[2]; // Data byte(s) mask.
 uchar dataCode[2]; // Data byte(s) value.
};

The ‘canFilter’ structure is used to define the type of filter to be used for received packets.
There are four types of filters that can be used with the SJA1000 chip. These are shown
as #define statements in ‘can_driv.h’:

STD_SNGL Standard frame, single identifier:
Filtering on one 11 bit identifier, RTR bit, and two data bytes.

STD_DUAL Standard frame, dual identifier:
Filtering on two 11 bit identifiers, two RTR bits, and one data byte for
each filter.

EXT_SNGL Extended frame, single identifier:
Filtering on one 29 bit identifier, one RTR bit.

EXT_DUAL Extended frame, dual identifier:
Filtering on two 16 bit identifiers only (no RTR bits).

The ‘canFilter’ structure can define all four filters. Defining filters can be one of the most
confusing tasks in dealing with the CAN network. A couple important points to remember
are:

1. The mask bit values are ‘0’ when you want the bit to match, and ‘1’ when you don’t
care about the bit status.

2. Even if you have a STD_SNGL filter like those used with DeviceNet, the chip will
use the first two data bytes in the packet for filtering. If you don’t intend to use the
data bytes for filtering, make sure the mask bit values are set to ‘1’ (set both
dataMask[0] and dataMask[1] to 0xff).

CONTEMPORARY CONTROL SYSTEMS, INC !!!! CANISA/CAN104 DRIVER !!!! VERSION 1.1 !!!! 5.23.00
PAGE 7

canBuffer

//
// Structure used for receive and transmit operations.
//
typedef struct canBuffer
{

ulong time; // Time stamp returned by RX service.
char type; // 0 = Standard Frame, 1 = Extended Frame.
long id; // Identifier: 11 or 29 bits.

 char rtr; // Remote Transmission Request bit.
char cnt; // Number of bytes in message.

 uchar data[8]; // RX/TX data.
};

The ‘canBuffer’ structure is used for both sending and receiving packets.

When sending, you assign the type, id, rtr, cnt, and data bytes. You do not assign a value
to ‘time’. A pointer to the ‘canBuffer’ you have just filled out is passed to ‘canSend()’, which
unloads the data and prepares a packet to be sent.

When receiving, you pass a pointer to a ‘canBuffer’ to ‘canRecv()’. If a packet is waiting
the ‘canBuffer’ will be filled out with data from the received packet. All fields will be filled by
‘canRecv()’, including the time stamp (see ‘canTime()’ function and Timer Module section).

CONTEMPORARY CONTROL SYSTEMS, INC !!!! CANISA/CAN104 DRIVER !!!! VERSION 1.1 !!!! 5.23.00
PAGE 8

Driver Functions

canInit()

// Initializes CAN chip and data structure(s).
// Returns pointer to ‘canObject’ if success.
// Returns NULL pointer if failure.
//

struct canObject *canInit (short irq ,
 ushort ioAddress ,
 short baudrate ,
 struct canFilter *filter,
 short rxBufSize ,
 short txBufSize);

This function creates and initializes a ‘canObject’ structure, initializes the CAN hardware,
and prepares the CAN board for sending and receiving. It is passed the PC interrupt
number (0-15), the base PC I/O address of the CAN card, the baudrate, a pointer to an
initialized ‘canFilter’ structure, and the number of packets that can be held in the receive
and transmit buffers. Memory is allocated for the ‘canObject’ and the packet buffers, the
‘canObject’ data elements are initialized to default values, and the hardware is initialized.

Note that an interrupt number of ‘0’ will place the CAN driver in polled mode. In this mode,
transmitted packets will not be buffered, and the ‘canSend()’ function will wait until data
can be loaded into the CAN chip. Received packets, if not retrieved from the CAN chip
before its buffer overflows, will be lost.

Valid baudrates are:

//
// CAN baud rates.
// Passed as parameter to 'canSetBaud()'.
//
#define BAUD_125KB 1
#define BAUD_250KB 2
#define BAUD_500KB 3

If successful, the function returns a pointer to the initialized ‘canObject’. You will use this
pointer as the first parameter to all other CAN driver functions. It returns a NULL pointer if
memory can’t be allocated or if the hardware cannot be initialized. If a null pointer is
returned, examine the global variable ‘canInitStatus’ for the cause of failure:

//
// Initialization failure codes.
// If 'canInit()' fails, one of these will be in ‘canInitStatus'.
//
#define INIT_OK 0 // No error.
#define INIT_NOCHIP 1 // Can't find/reset chip.
#define INIT_BADIRQ 2 // Bad irq number.
#define INIT_MALLOC_CP 3 // Can't allocate memory for object.
#define INIT_MALLOC_TX 4 // Can't allocate memory for tx buffer.
#define INIT_MALLOC_RX 5 // Can't allocate memory for rx buffer.

CONTEMPORARY CONTROL SYSTEMS, INC !!!! CANISA/CAN104 DRIVER !!!! VERSION 1.1 !!!! 5.23.00
PAGE 9

canSend()

// Transmits a message.
 // Returns SUCCESS, or FAILURE if buffer full.
 //
short canSend (struct canObject *cp , struct canBuffer *txBuf);

This function transmits a packet on the CAN network. You pass a pointer to an initialized
‘canObject’ and a pointer to an initialized ‘canBuffer’. The data in the ‘canBuffer’ is either
sent directly to the CAN chip or is placed in the transmit buffer if the CAN chip is busy
transmitting another packet.

It returns SUCCESS if the packet can be queued for transmit; FAILURE if the transmit
buffer is full.

Note that SUCCESS does not mean that the packet has been sent. You can look at the
value of ‘canObject.txCount’ to determine if all packets in the transmit buffer have been
loaded into the CAN chip for transmission; this data value will be ‘0’ if no packets remain in
the transmit buffer. You must then use the ‘canStatus()’ function and look at the
STAT_TXCOMPLETE bit to determine if the last packet has been successfully
transmitted.

canRecv()

// Retrieves a packet; fills 'rxBuf' with data.
 // Returns SUCCESS if packet waiting and data transferred
 // to 'rxBuf'.
 // Returns FAILURE if no packet available.
 //
short canRecv (struct canObject *cp , struct canBuffer *rxBuf);

This function retrieves a packet from the receive buffer if one is available. You pass a
pointer to an initialized ‘canObject’ and a pointer to an empty ‘canBuffer’. If a packet is
waiting in the receive buffer (or within the CAN chip in polled mode), data will be
transferred to the ‘canBuffer’ structure.

The value of the time stamp is described in the ‘canTime()’ function and the Timer Module
section below.

It returns SUCCESS if a packet was available; FAILURE if no packet was waiting.

canDestroy()

// Disables CAN chip, releases allocated memory,
// and unhooks interrupt.

 //
void canDestroy (struct canObject *cp);

This function disables the CAN hardware, releases memory allocated for the ‘canObect’,
releases memory allocated for the receive and transmit buffers, and unhooks the interrupt
used by the CAN board. It should be called for each ‘canObject’ before your program
exits.

CONTEMPORARY CONTROL SYSTEMS, INC !!!! CANISA/CAN104 DRIVER !!!! VERSION 1.1 !!!! 5.23.00
PAGE 10

canReset()

// Puts CAN chip in reset mode
 // Returns SUCCESS or FAILURE if chip can't be reset.

//
short canReset (struct canObject *cp);

This function puts the CAN chip in reset mode, effectively disconnecting it from the CAN
network. Use this function to remove the chip from the network.

It returns SUCCESS if chip can be reset; FAILURE if chip can’t be put into reset mode.

canEnable()

// Brings CAN chip out of reset mode.
// Returns SUCCESS or FAILURE if chip can't be brought

 // out of reset.
 //
short canEnable (struct canObject *cp);

This function brings the CAN chip back online after ‘canReset()’ has been called.

It returns SUCCESS if the chip can be brought out of reset mode; FAILURE otherwise.

canSetBaud()

// Sets baud rate.
// Returns SUCCESS or FAILURE if invalid baud rate.

 //
short canSetBaud (struct canObject *cp , short baudrate);

This function is used to change the baud rate of the CAN chip. It puts the chip into reset,
changes the baud rate, and the brings the chip out of reset. Refer to the BAUD_ #defines
in CAN_DRIV.H for valid baud rates:

//
// CAN baud rates.
// Passed as parameter to 'canSetBaud()'.
//
#define BAUD_125KB 1
#define BAUD_250KB 2
#define BAUD_500KB 3

It return SUCCESS if the baud rate can be changed; FAILURE otherwise.

CONTEMPORARY CONTROL SYSTEMS, INC !!!! CANISA/CAN104 DRIVER !!!! VERSION 1.1 !!!! 5.23.00
PAGE 11

canSetFilter()

// Sets acceptance filter for received packets.
 // Returns SUCCESS or FAILURE if invalid filter type.
 //
short canSetFilter (struct canObject *cp , struct canFilter *filter);

This function is used to change the acceptance filter for received packets. You pass it a
pointer to an initialized ‘canFilter’ structure containing the new filter. This data is transferred
to the CAN chip. The CAN chip is put into reset mode, the new filter is loaded, and the
chip is brought out of reset mode.

It returns SUCCESS if the new filter can be loaded; FAILURE if invalid filter type.

canStatus()

// Returns status informaton.
// Refer to STAT_XXX #defines above.
//

ushort canStatus (struct canObject *cp);

Returns the status of the CAN chip. Refer to the STAT_ #defines in CAN_DRIV.H for the
meaning of each bit in the returned value:

//
// CAN status bits.
// Bitfield definitions for value returned by 'canStatus()'.
//
#define STAT_RXRDY 0x01 // Message waiting in RX buffer.
#define STAT_OVERRUN 0x02 // Receive data overrun.
#define STAT_TXRDY 0x04 // TX buffer will accept packet.
#define STAT_TXCOMPLETE 0x08 // TX buffer empty and TX complete.
#define STAT_ERROR 0x10 // Chip reports error condition.
#define STAT_BUSOFF 0x20 // Chip is in bus-off condition.

canError()

// Returns, and then clears, accumulated error status
// bits.

 //
ushort canError (struct canObject *cp);

Returns, and then sets to ‘0’, the value of ‘canObject.errorFlags’. This structure member is
the accumulated ‘OR’ value of the error interrupt bits, excluding RI_BIT and TI_BIT:

//
// CAN Interrupt bitmasks; used for interrupt enable & status.
//
#define RI_BIT 0x01 // Receive.
#define TI_BIT 0x02 // Transmit.
#define EI_BIT 0x04 // Error warning.
#define DOI_BIT 0x08 // Data overrun.
#define WUI_BIT 0x10 // Wake-up.
#define EPI_BIT 0x20 // Error Passive.
#define ALI_BIT 0x40 // Arbitration lost.
#define BEI_BIT 0x80 // Bus error.

CONTEMPORARY CONTROL SYSTEMS, INC !!!! CANISA/CAN104 DRIVER !!!! VERSION 1.1 !!!! 5.23.00
PAGE 12

canTxPurge()

// Discard any packets in tx buffer waiting to be sent.
 //
void canTxPurge (struct canObject *cp);

This function discards any transmit packets waiting to be sent. It does not stop a
transmission in progress or disable the transmit function on the CAN chip.

canRxPurge()

// Discard any packets in rx buffer waiting to be read.
 //
void canRxPurge (struct canObject *cp);

This function discards any packets in the receive buffer. It does not disable the receive
function on the CAN chip.

canRecover()

// Recovers from bus-off (or other error condition).
 // Resets the chip, purges tx & rx packets, and takes the
 // chip out of reset.
 //
void canRecover (struct canObject *cp);

This function is used to recover from a fatal system error. It disables all CAN interrupts,
puts the CAN chip in reset mode, purges all transmit and receive packets, aborts any
transmit operation in progress, takes the CAN chip out of reset, and then re-enables
interrupts.

Use this function to recover from a bus-off condition or other serious network error.

CONTEMPORARY CONTROL SYSTEMS, INC !!!! CANISA/CAN104 DRIVER !!!! VERSION 1.1 !!!! 5.23.00
PAGE 13

canTime()

// Performs timer functions needed for time stamp.
// 1 = Reset time stamp to '0'.
// 2 = Reset time stamp to '0' when next packet
// is received.
// See TIME_XXX #defines above.
//

void canTime (struct canObject *cp , short funtion);

This function is used to modify the time stamp value returned in the ‘time’ field of the
‘canBuffer’ structure by the receive function. The value passed as the ‘function’ argument
determines what action is taken:

//
// Time function codes.
// These are used by 'canTime()' to determine which function to perform.
//
#define TIME_RESET 0x01 // Resets time stamp to zero.

// Used to define a starting point for time
// stamps.

#define TIME_TRIG 0x02 // Sets trigger so that next received packet
// gets a time stamp of '0'.
// Used to start a sequence of time stamps
// starting from '0'.

When a receive interrupt occurs, the value of ‘canBuffer.time’ is loaded with a time stamp.
The value of the time stamp is computed from the difference between the global variable
‘tmrTics’ (from the timer module) and ‘canObject.timeZero’.

The TIME_RESET function loads the current value of ‘tmrTics’ into ‘canObject.timeZero’
so that subsequent time stamps will be relative to when this function was called (the
current time).

The TIME_TRIG function sets the ‘canObject.timeTrig’ flag so that during the next receive
interrupt the value of ‘canObject.timeZero’ will be loaded with ‘tmrTics’. This will cause the
next received packet to have a time stamp of ‘0’, and all subsequent packets will have
time stamps reflecting a value relative to that next receive interrupt.

Note that the time stamp function will not be active unless the system timer interrupt is
hooked by ‘tmrHook()’.

Refer to the section regarding the Timer Module for hooking the timer interrupt.

CONTEMPORARY CONTROL SYSTEMS, INC !!!! CANISA/CAN104 DRIVER !!!! VERSION 1.1 !!!! 5.23.00
PAGE 14

Timer Module

The timer module is defined by PCTIMER.H and PCTIMER.C. The features in this module
are used by the can driver functions to establish and record time stamps for received
packets. The timer module allows you to increase the frequency of the system timer
interrupt to achieve much higher timing resolution than normally possible.

tmrHook()

In order for the time stamp function to operate, you must first “hook” the system timer
interrupt routine. This is done by the ‘tmrHook()’ function:

//
// This routine installs the timer object system timer tic handler. It is
// installed at the "top of the chain" of any other system timer tic
// handlers (for PC timer 0). It can increase the frequency of system
// timer tics. It calls the previous timer tic handler on (approximately)
// the same rate as the PC standard (18.2 tics/second).
// Value 'newMult' specifies new timer operating rate as an integer
// multiple of the basic PC rate of 18.2 tics/second.
// Sample values and their associated time periods:
//
// 1: 18.2 tics/second 54.925 mS/tic (PC standard)
// 2: 36.4 tics/second 27.463 mS/tic
// 55: 1001 tics/second 998 uS/tic
// 110: 2002 tics/second 499 uS/tic
//
void tmrHook(int newMult);

After calling ‘tmrHook()’ with an appropriate clock divisor value, the system timer tic is
redirected to the timer module. Each timer interrupt, the global variable ‘tmrTics’ is
incremented. This value is used by the receive interrupt routine to establish time stamps
for received packets.

The timer module also allows you to implement general purpose high resolution timers for
other purposes in your program. Refer to PCTIMER.H for a description of the available
timer functions.

tmrUnhook()

Before your application returns to DOS, it will be necessary to “unhook” the system timer
interrupt using the ‘tmrUnhook()’ function:

// This routine MUST be called when program terminates (if the timer interrupt
// is hooked) to remove the timer tic interrupt handler from the "chain".
// Interrupt handler goes away when program terminates, and if the interrupt
// vector is still set to our (now nonexistent) routine the PC goes off into
// the weeds.
//
void tmrUnhook(void);

Failure to call ‘tmrUnhook()’ will guarantee a system crash.

	CAN Driver Overview
	Provided Files
	Installation
	History
	References
	Driver Operation
	CAN Bus Considerations
	Driver Data Structures
	canObject
	canFilter
	canBuffer

	Driver Functions
	canInit()
	canSend()
	canRecv()
	canDestroy()
	canReset()
	canEnable()
	canSetBaud()
	canSetFilter()
	canStatus()
	canError()
	canTxPurge()
	canRxPurge()
	canRecover()
	canTime()

	Timer Module
	tmrHook()
	tmrUnhook()

